Considerations for Mechanical Ventilation of Patients with COPD

William Wojciechowski, MS, RRT
Department of Cardiorespiratory Care
University of South Alabama
السلام عليكم
Outline

• **Pathophysiological Considerations of COPD**
• **COPD Exacerbation**
• **Guidelines for Mechanical Ventilation of COPD Patients**
• **Case Study**
Pathophysiological Considerations
COPD patients

90% Chronic Bronchitis

5% Emphysema

5% Chronic Bronchitis

5% Emphysema

100% COPD patients
Pathophysiological Considerations of COPD

<table>
<thead>
<tr>
<th>Chronic Bronchitis</th>
<th>Emphysema</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inflammation & swelling of airways</td>
<td>• Destruction & enlargement of peripheral airways</td>
</tr>
<tr>
<td>• Excessive production of mucus</td>
<td>• Destruction of pulmonary capillaries</td>
</tr>
<tr>
<td>• Partial & total mucous plugging</td>
<td>• Loss of elastic recoil</td>
</tr>
<tr>
<td>• Bronchial smooth muscle contraction</td>
<td>• Less surface area for gas exchange</td>
</tr>
<tr>
<td>• Hyperinflation</td>
<td>• Hyperinflation</td>
</tr>
</tbody>
</table>
Pathophysiological Considerations of COPD

“Blue Bloater” “Pink Puffer”
Pathophysiological Considerations of COPD

COPD patients have:

- Increased R_{aw}
- Increased C_L

- Expiratory airflow obstruction
- Lengthened ventilation time constant
- Air trapping
COPD Exacerbation
COPD Exacerbation Features

- Increased Exp. Raw
- Increased RR
- Intrinsic PEEP
- Alveolar hypoventilation
- Respiratory muscle work
- Increased O2 consumption
COPD Exacerbation

- More air trapping
- Hypoventilation
- Increased WOB
- Muscle fatigue
Acute-on-Chronic Respiratory Failure

Uncompensated respiratory acidosis superimposed on compensated respiratory acidosis
DEATH

No intervention

Respiratory failure

DEATH
O₂ Therapy

Bronchodilators

Conventional Therapy

Anti-inflammatory agents

NPPV

ANTIBIOTICS??
Antibiotics are given when:

1) Increased dyspnea
2) Increased sputum volume
3) Increased sputum purulence

1) Severe exacerbation
2) Mechanical ventilation (invasive or noninvasive)
Common bacteria recovered from lower airways during COPD exacerbation.

- Hemophilus influenzae
- Streptococcus pneumoniae
- Moraxella catarrhalis
COPD Exacerbation

Current Standard of Care

• Conventional Therapy: O_2 therapy, bronchodilators, anti-inflammatory agents

• NPPV:
 – Reduces WOB
 – Reduces inspiratory muscle activity
 – Reduces RR
 – Increases VT
 – Improves minute ventilation
 – Enables better gas exchange
 – Rests respiratory muscles
Guidelines for Mechanical Ventilation of COPD Patients
Guidelines for Mechanical Ventilation of COPD Patients

Associated Morbidity When Mechanically Ventilating COPD Patients

- Air trapping
- Nosocomial infections
- Barotrauma
- Cardiac problems (cor pulmonale)
- Aspiration
- Difficulty weaning
Guidelines for Mechanical Ventilation of COPD Patients

Goals for Mechanically Ventilating COPD Patients

• Maximize patient-ventilator synchrony
• Reduce WOB
• Alleviate patient anxiety
• Avoid problems associated with mechanical ventilation
Guidelines for Mechanical Ventilation of COPD Patients

Non-Invasive Positive Pressure Ventilation (NPPV)

1st Choice
NPPV

• Reduces inspiratory muscle activity
• Decreases respiratory rate
• Increases V_T
• Increases minute ventilation
• Improves alveolar ventilation
• Improves gas exchange
• Rests respiratory muscles
Physiological Goals of NPPV in ARF

- Increase alveolar ventilation
- Improve gas exchange

Both goals are accomplished by resting the muscles of respiration.
Guidelines for Mechanical Ventilation of COPD Patients

NPPV Selection Criteria

• **Determine need for ventilatory assistance**
 – Dyspnea (moderate to severe respiratory distress)
 – Excessive accessory muscle use/paradoxical breathing
 – pH < 7.35 and/or PaCO2 > 45 mm Hg
 – PaO2/FIO2 < 200
 – RR > 25 breaths/minute
 – Potential reversibility of the disease process

• **Exclusion criteria**
Guidelines for Mechanical Ventilation of COPD Patients

NPPV Exclusion Criteria

- Respiratory arrest
- Need for immediate ET intubation
- Hemodynamic instability
- Inability to protect airway (impaired cough)
- Excessive secretions
- Agitated & confused
- Uncooperative or unmotivated
- Facial deformities
- Brain injury/unstable respiratory drive
Guidelines for Mechanical Ventilation of COPD Patients

NPPV for Acute COPD Exacerbations

• Provides time for conventional therapy to take effect:
 – O_2 therapy
 – Bronchodilators
 – Anti-inflammatory agents
Guidelines for Mechanical Ventilation of COPD Patients

- **NPPV**: avoid hazards associated with ETT & invasive positive pressure ventilation (IPPV)
- Bilevel positive airway pressure (BiPAP)
- Continuously monitor: SpO₂ & HR
 - F₁O₂ to maintain SpO₂ at 90%-92%
- ABGs 2 hours into NPPV
- Improving pH and PaCO₂: positive signs
- Chronic hypercapnia: takes longer to improve
Guidelines for Mechanical Ventilation of COPD Patients

Discontinue NPPV

- **pH and PaCO₂:**
 - No improvement
 - Worsening
- Continued respiratory distress
- Deteriorating level of consciousness
- Hemodynamic instability
- Worsening oxygenation status
Guidelines for Mechanical Ventilation of COPD Patients

Initial Ventilator Settings for IPPV
Guidelines for Mechanical Ventilation of COPD Patients

Initial Ventilator Settings (IPPV)

- **Inspiratory flow**: meet patient’s demands (> 60 L/minute)
- **VT**: 6 to 8 ml/kg
- **RR**: 8 to 12 breaths/minute
Guidelines for Mechanical Ventilation of COPD Patients

Initial Ventilator Settings (IPPV)

- I:E ratio with longest T_E possible:
 - Decreasing T_I
 - Increasing T_E
 - Reducing RR and/or VT
- Permissive hypercapnia: $\text{PaCO}_2 >$ patient’s baseline
- PEEP: ≤ 5 cm H$_2$O
- Minute ventilation: low as possible yet promote gas exchange (baseline ABGs)
Guidelines for Mechanical Ventilation of COPD Patients

Initial Ventilator Settings (IPPV)

- FiO_2: < 0.50 (with $\text{SpO}_2 > 90\%$)
- ABGs:
 - PaO_2 55 to 75 mm Hg
 - PaCO_2 50 to 60 mm Hg
 - pH 7.30 to 7.35
- Monitor for & minimize dynamic hyperinflation
- P_{plateau}: < 30 cm H$_2$O
Guidelines for Mechanical Ventilation of COPD Patients

Considerations during Mechanical Ventilation

• Adequate hydration
• Pharmacologic therapy
 – Bronchodilators
 – Corticosteroids
 – Secretion mobilization
 – Antibiotics (if indicated)
• Nutritional support
 – Inadequate food intake
 – Hypermetabolism

To reverse airflow limitation
COPD Case Study
COPD Case Study

- 73-year-old male, 5’10” in ER
- 62 kg (IBW 75.5 kg)
- 40-pack-years
- Retired police officer
- Retired living at home with wife
COPD Case Study

Mental Status:

• Alert, oriented, but weak
• Speaks in halting sentences
• Catches breath between efforts to talk
Physical Appearance:
• Tall & thin
• Barrel chest
• Pale skin
• Prolonged expiration through pursed lips
• Labored breathing
• Sitting in tripod position
• Active sternocleidomastoids
COPD Case Study

Auscultation:
- Bilateral wheezing
- Inspiratory crackles

Percussion:
- Hyperresonance bilaterally

Cough:
- Weak
- Moderate secretions
- Yellow, thick mucus
COPD Case Study

- Room air SpO2 71%
- Now breathing 28% O₂ via air-entrainment mask
- Nebulized albuterol via SVN
- Unable to breath deeply & breath hold
- Complains of dyspnea
COPD Case Study

ABGs on 28% O2:

- pH 7.24
- PaCO₂ 97 mm Hg
- PaO₂ 38 mm Hg
- HCO₃ 41 mEq/L
ABG Interpretation:

- Acute-on-chronic respiratory failure with severe hypoxemia
- Uncompensated respiratory acidosis superimposed on compensated respiratory acidosis with severe hypoxemia
COPD Case Study

• CXR:
 – infiltrates in both lower lung fields
 – flattened diaphragms
 – widened rib spaces
• Sputum: thick, yellow
• Body temperature: normal
• Labs: C & S done
COPD Case Study

- NPPV initiated
 - to avoid auto-PEEP: low $V_T \times$ low RR
 - synchronize ventilator with patient
 - BiPAP S/T-D selected
 - RR: 8 breaths/minute
 - TCT: (60 sec/min divided by 8 bpm = 7.5 seconds)
 - T_I: 13% of TCT T_I 1 second
 - IPAP: 14 cm H$_2$O T_E 6.5 seconds
 - EPAP: 4 cm H$_2$O
 - V_T: 600 ml (8 ml/kg x 75.5 kg)
 - FIO$_2$: titrated to SpO$_2$ (> 90%) – FIO$_2$: 0.40
COPD Case Study

- Patient transferred to ICU
- NPPV for 2 hours
- Patient’s secretions increase
- Patient agitated (repeated attempts to remove mask)
COPD Case Study

- NPPV fails
- Patient given Ativan and succinylcholine
- Patient intubated with 8.5 mm I.D. ETT
- IPPV initiated
- Time-triggered, VC-SIMV with PSV instituted
 - Time-triggered, VC- or PC-CMV unloads respiratory muscles more than patient-triggered, VC- or PC-SIMV (increases risk of PEEP_{auto} & increased lung pressures).
COPD Case Study

IPPV STRATEGY

• Get patient under control.
• Sedate & short-duration paralytic.
• Establish patient-ventilator synchrony.
• Unload muscles of respiration (1 to 2 days).
• Patient likely will sleep because of fatigue.
• Anxiolytic & paralytic wear off.
• Ventilator accommodates patient’s ventilatory needs.
• Gradually reduce mandatory RR.
• Wean.
COPD Case Study

Settings for Time-Triggered, VC-SIMV with PSV

- V_T: 600 ml ($8 \text{ ml/kg} \times 75.5 \text{ kg}$)
- Mandatory RR: 10 breaths/minute
- Inspiratory flow: 40 L/minute
- Pressure support: 10 cm H$_2$O
- FiO$_2$: 0.40

Treat underlying cause during time on mechanical ventilator

- Irritants (bronchodilators & corticosteroids)
- Pneumonia (antibiotics)
COPD Case Study

Flow-Time Scalar: Mandatory Breath
COPD Case Study
Pressure-Time Scalar:
Time-Triggered Mandatory Breaths

![Diagram of Pressure-Time Scalar: Scooped Inspiratory Limb]
COPD Case Study

Pressure-Time Scalar: Time-Triggered Mandatory Breaths
COPD Case Study

Measures Taken To Reduce/Eliminate Auto-PEEP

- Increase inspiratory flow
- Shorten T_I
- Lengthen T_E
- Decrease I:E
- Decrease RR
- Decrease V_T
- Use larger I.D. ET
- Administer bronchodilator
- Institute PEEP (50% - 80% of auto-PEEP)
COPD Case Study

Action Taken To Correct for Auto-PEEP

• Inspiratory flow increased to 80 L/minute.
COPD Case Study

Flow-Time Scalar: No Auto-PEEP
COPD Case Study

Pressure-Time Scalar
COPD Case Study

Final Disposition

- Mandatory RR decreased over time
- SBT conducted successfully
- Weaning successful
- Patient extubated
- Eventual discharge home
شكرًا جزيلاً