Respiratory Therapy Drugs

Jennifer McDaniel, BS, RRT-NPS
Anti-Asthma Drugs

- Bronchodilators
 - Adrenergic Agents
 - Anti-Muscarinics
 - Methylxanthines

- Maintenance Drugs
 - Corticosteroids
 - Antiallergics
 - Antileukotrienes
Another Classification

- 1995 Global Initiative for Asthma
- 1997 NAEPP Guidelines
 - Long-term control
 - Quick relief
Long-Term Control

- Inhaled corticosteroids
- Cromolyn sodium
- Nedocromil
- Long-acting β_2 agonists
- Methylxanthines
- Leukotriene antagonists
- Systemic corticosteroids
Quick-Relief

• Short-acting inhaled β_2 agonists
• Anticholinergic
• Systemic corticosteroids
Mucokinetic Agents

- Bland aerosols
- Acetylcysteine
- Propylene glycol
- Sodium bicarbonate
- Dornase alfa
Adrenergic Agents - Actions

- Agents - Vasoconstriction
 - Used topically to decrease edema
 - Used systemically to increase blood pressure

- Agents - Increase heart rate and contractility - Increase cardiac output
Adrenergic Agents - Actions

- **β_2 Agents**
 - Relaxation of bronchial smooth muscle
 - Increase in mucociliary action
 - Some inhibition of inflammatory mediator release
 - Relaxation of vascular smooth muscle
 - Relaxation of other smooth muscle (e.g. uterine)
 - Useful as a tocolytic agent (terbutaline)
Classes of Adrenergic Agents

- Catecholamines
- Resorcinols
- Saligenins
- Ultra-long acting
- Mucosal vasoconstrictors
Catecholamines

- L-Epinephrine (Adrenalin): \(\leq 1, \leq 1, \leq 2\)
 - potent
 - given SC for asthma attack (esp. pediatrics)

- D, L-Epinephrine or Racemic Epinephrine (Vaponefrin, MicroNefrin): \(\leq 1, \leq 1, \leq 2\)
 - not as potent as L-Epinephrine
 - used to reduce airway edema
Catecholamines

- **Isoproterenol (Isuprel):** \((\beta_1, \alpha_1, \alpha_2) \)
 - Nonspecific \(\alpha \) agonist
 - Very high potency
 - Relatively short acting (1-2)

- **Isoetharine (Bronkosol):** \((\alpha_1, \alpha_2) \)
 - first \(\alpha_2 \) selective drug (1-3)

- **Bitolterol (Tornalate):** \(\alpha_2 \)
 - actually a prodrug (inactive) that is converted to colterol (a \(\alpha_2 \) specific catecholamine) (5-8)
Resorcinols

• Metaproterenol (Alupent, Metaprel): \(\text{\textbullet} (1), 2 \)
 – low potency
 – relatively long acting (3-6)

• Terbutaline (Bricanyl, Brethine): \(\text{\textbullet} 2 \)
 – high potency
 – relatively long acting (3-6)
Saligenins

- Albuterol (Ventolin, Proventil): \(\text{long acting (3-8)} \)
- Pirbuterol (Maxair): \(\text{long acting (5)} \)
- Levalbuterol (Xopenex): \(\text{fewer side effects} \)
- long acting
Ultra-Long Acting

- Salmeterol (Serevent): \(\text{\textregistered} \)
 - very long acting (12)
 - slow onset
 - not useful in acute attack, a maintenance bronchodilator
- Formoterol (Foradil): \(\text{\textregistered} \)
 - very long acting (12)
 - faster onset
 - greater efficacy than albuterol
 - not recommended for rescue due to cumulation
- Arformoterol (Brovana)
 - nebulized solution (12)
Mucosal Vasoconstrictors

- Phenylephrine (Neo-Synephrine): \leq_1, (\leq_1), (\leq_2)
Belladonna alkaloids (tertiary amines) : botanical derivatives from *Atropa belladonna* (Nightshade), *Datura spp* (Family: Solanaceae)

Atropine sulfate
- Not widely used anymore because of
 - drying effect on secretions
 - CNS effects
 - Other side effects

Scopolamine
- preanesthetic agent
- motion sickness
Anti-Muscarinics

- Quaternary amines
 - Ipratropium bromide (Atrovent)
 - potent bronchodilator
 - less drying effect on secretions
 - does not readily cross blood:brain barrier - reduced CNS and ocular effects
 - Glycopyrrolate (Robinul)
 - Tiotropium bromide (Spiriva)
Combination Drugs

- Ipratropium & albuterol
 - Combivent (MDI)
 - DuoNeb (SVN)
Methylxanthines

• Found in many beverages
 – Theophylline: tea
 – Caffeine: coffee, cocoa, cola
 – Theobromine: cocoa

• Mode of action
 – Unknown, but once proposed to be a phosphodiesterase inhibitor
 – May work by combining with adenosine receptors
Methylxanthines

- Pulmonary effects
 - bronchial smooth muscle relaxation
 - inhibit glandular secretions
 - inhibit release of allergic mediators
 - respiratory stimulant - increasing CO₂ sensitivity of medullary respiratory centers
 - increase diaphragmatic contractility
Methylxanthines

- Extrapulmonary effects
 - Cardiac effects
 - positive inotropic effect
 - positive chronotropic effect
 - increases myocardial oxygen demands
 - may cause arrhythmias
Methylxanthines

- Extrapulmonary effects
 - Vascular effects
 - dilation of pulmonary blood vessels
 - dilation of coronary blood vessels
 - dilation of renal blood vessels, increase urine
 - constriction of cerebral blood vessels
Methylxanthines

- Extrapulmonary effects
 - Other effects
 - mild CNS stimulation
 - stimulation of ventilatory, cardiac, and vasomotor centers of brainstem
 - skeletal muscle stimulation
 - Indirect diuretic effect
 - Increased glandular secretion and increased motility of G. I. tract smooth muscle
Methylxanthines

- Serum levels and therapeutic index
 - fairly low therapeutic index
 - therapeutic serum level 10-20 mg/mL
- Toxicities
 - nausea and vomiting: >20 mg/mL
 - cardiac arrhythmias & seizures: >40 mg/mL
Methylxanthines

- Metabolized by liver (hepatic microsomal enzymes)
 - cigarette smoking induces enzymes - decreasing 1/2 life of theophylline
 - cirrhosis, CHF, etc. decrease hepatic blood flow & increase 1/2 life
 - Drugs that damage liver (e.g. erythromycin, rifampin) increase 1/2 life
Methylxanthines

- Aminophylline (theophylline ethylenediamine): Aminophyllin, Somophyllin
- Oxtriphylline: Choledyl
- Dyphylline: Aerophylline
Corticosteroids

- Adrenal cortex produces:
 - glucocorticoids (hydrocortisone or cortisol)
 - mineralocorticoids (aldosterone)
 - gonadocorticoids (anabolic steroids)
Adrenal cortex dysfunction - Hypersecretion

- Mineralocorticoids: $\uparrow \text{Na}^+ , \downarrow \text{K}^+$, fluid accumulation \rightarrow "moon face"
- Glucocorticoids: gluconeogenesis \rightarrow \uparrow glucose
 - diabetes
 - fat redistribution
 - immunosuppression \rightarrow \uparrow infection
 - weight gain
Adrenal cortex dysfunction - Hypersecretion

- Gonadoocorticoids: Masculinization
 - hirsutism
 - ↑ muscle mass
 - voice change
 - disruption of menstrual cycle
Adrenal cortex dysfunction - Hyposcretion

- Mineralocorticoids: ↓ Na\(^+\), ↑ K\(^+\), rapid diuresis → renal suppression, ↓ blood pressure, arrhythmias, death
- Glucocorticoids: ↓ glucose, usually compensated
- Gonadocorticoids: muscle weakness
Comparison: Hypersecretion vs Hyposcretion

<table>
<thead>
<tr>
<th>Cushingoid Effects</th>
<th>Addisonian Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edema</td>
<td>Diuresis, fluid loss</td>
</tr>
<tr>
<td>Hypertension</td>
<td>Hypotension</td>
</tr>
<tr>
<td>Hyponatremia</td>
<td>Hyponatremia</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>Hyperkalemia</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>Hypoglycemia</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Renal suppression</td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>↓ resistance to stress</td>
</tr>
<tr>
<td>Weight gain</td>
<td>Weight loss</td>
</tr>
</tbody>
</table>
Chronic Systemic Steroid Therapy

• General Effects
 – Hypothalamic suppression
 – Adenohypophyseal suppression
 – Adrenocortical suppression
Chronic Systemic Steroid Therapy

- Mineralocorticoid Effects
 - Hypernatremia
 - Edema
 - Hypertension
 - Hypokalemia
Chronic Systemic Steroid Therapy

• Glucocorticoid Effects
 – Fat and protein mobilization
 – Immunosuppression
 – Connective tissue destruction
 – Hyperglycemia
 – Adrenocortical diabetes
 – Glaucoma
Chronic Systemic Steroid Therapy

• Gonadocorticoid Effects
 – Protein anabolism
 – Masculinization
Chronic Systemic Steroid Therapy

• Other Effects
 – thin, fragile, dry, parchment-like skin
 – osteoporosis & vertebral compression
 – cataracts
 – peptic ulcers
 – behavioral changes

• Abrupt withdrawal → Addisonian crisis
Therapeutic Systemic Agents

- Short-Acting (8-12 hours)
 - Hydrocortisone (Cortisol): Solu-Cortef
 - Cortisone: Cortone
Therapeutic Systemic Agents

• Intermediate-Acting (12-36 hours)
 – Methylprednisolone: Medrol (Oral), Solu-Medrol (IV)
 – Prednisolone: Delta-Cortef
 – Prednisone: Colisone, Deltasone, Winpred (Oral)
 – Triamcinolone Azmacort (oral MDI), Aristocort (Oral, IM), Kenacort (Oral)
Therapeutic Systemic Agents

- Long-Acting (36-72 hours)
 - Betamethasone: Celestone (IM)
 - Dexamethasone: Decadron (Oral, IM, IV, Nasal MDI), Hexadrol (Oral, IM, IV), Dexasone (Oral)
Therapeutic Nonsystemic Agents

- **Beclomethasone**: Beclovent, Vanceril (Oral MDI & DPI); Beconase, Vancenase (Nasal MDI)
- **Flunisolide**: Bronalide, AeroBid (Oral MDI); Nasalide (Nasal spray)
- **Budesonide**: Pulmicort (Oral MDI)
- **Fluticasone**: Flovent (Oral MDI), Flonase (Nasal spray)
Reducing/Eliminating Systemic Steroids

- Alternate day therapy
- Add inhaled corticosteroids
- Use other maintenance drugs
- Tapered withdrawal
Antiallergic Drugs: Cromolyn

- **Trade names:** Intal, Aarane
- **Action:** stabilizes mast cells, preventing mediator release
- **Route of administration:** inhalation
- **Other cromolyn drugs**
 - Nasalcrom: nasal solution for prophylaxis of seasonal rhinitis
 - Opticrom: seasonal allergic conjunctivitis
Antiallergic Drugs: Cromolyn

- **Uses**
 - No role in treatment of acute bronchospasm
 - Prophylaxis of asthma (esp. allergic); 6 to 12 weeks for peak effectiveness
 - Prevention of cold air and exercise-induced bronchospasm
 - Adverse effects - with DPI
 - Throat irritation: dryness, hoarseness, coughing
 - Bronchospasm: wheezing
Antiallergic Drugs: Nedocromil

- **Action:** blocks production of inflammatory mediators
- **Uses:** similar to cromolyn
Antileukotrienes: Zileutin

- Trade name: Zyflo
- Action: inhibits formation of leukotrienes
- Uses:
 - asthma maintenance
 - not useful for acute bronchospasm
- Dosage: 600 mg QID 100 = $62.50
Antileukotrienes: Zafirlukast

• Trade name: Accolate
• Action: competitive, reversible antagonist of the leukotriene D4 receptor
• Uses:
 – asthma maintenance
 – exercise-induced asthma
 – not useful for acute bronchospasm
• Dosage: 20 mg BID 100 = $84.67
Antileukotrienes: Montelukast

- Trade name: Singulair
- Action: competitive, reversible antagonist of the leukotriene D4 receptor
- Uses:
 - asthma maintenance
 - exercise-induced asthma
 - not useful for acute bronchospasm
- Dosage: 5 mg or 10 mg QD
- Approved for use in children
Mucokinetics: Bland Aerosols

- Physiologic saline (0.9%)
- Sterile distilled water
- Hypertonic saline (>0.9%)
- Hypotonic saline (4.5%)
Mucokinetics: Acetylcysteine

- Trade name: Mucomyst
- Action: ruptures disulfide bonds of glycoproteins
- Effectiveness: best when given by direct instillation, especially via bronchoscope.
- Adverse effects: bronchospasm, “rotten egg” odor and taste, nausea and vomiting
- Precautions: administer with a bronchodilator
- 10% and 20% solutions
Mucokinetics: Propylene glycol

- Action: hygroscopic agent - absorbs water & ruptures hydrogen bonds
- Bacteriostatic: not suitable for sputum induction for sputum induction intended for C & S
Mucokinetives: Sodium bicarbonate

- Action: weakens saccharide side chains of glycoproteins
Mucokinetics: Dornase alfa

• Trade name: Pulmozyme
• rhDnase
• Effective against infected sputum in cystic fibrosis
• Expensive
• Usually, by inhalation once daily
• Stored refrigerated (2-8°C)
Combination Drugs

- Advair
 - salmeterol (5mcg)
 - fluticasone (100, 250, or 500 mcg)
- Symbicort
 - formoterol (4.5 mcg)
 - Budesonide (80 or 160 mcg)