Oxygen Therapy

CRC 330
Cardiorespiratory Care
University of South Alabama
Overview of Therapeutic Topics

- Indications
- Therapeutic objectives
- Contraindications, hazards, precautions
- Assessment of outcome
- Equipment
- Procedures
- Laboratory exercises
- Clinical practice
Production of Oxygen: Fractional Distillation of Air

- Air is dried and filtered
- Compressed to 200 atm (this heats it)
- Compressed air is cooled to room temp
- Quickly expanded to 5 atm, where it liquifies
- The liquid air is transferred to a distillation column
- Allowed to warm, so gases can boil-off
 - N\textsubscript{2} boils off at -320.4 F
 - O\textsubscript{2} boils off at -297.3 F
- Process is repeated until oxygen purity exceeds 99%
Fractional Distillation

(Courtesy Nellcor Puritan Bennett, Pleasanton, Calif.)

Copyright © 2004, 1999, Mosby, Inc. All Rights Reserved.
Indications for oxygen therapy

Documented hypoxemia defined as:

- Adults, children, and infants older than 28 days, \(\text{PaO}_2 < 60 \text{ mm Hg} \)
- Arterial saturation (\(\text{SaO}_2 \)) < 90% in subjects breathing room air
- \(\text{PaO}_2 \) or \(\text{SaO}_2 \) below desirable range for specific clinical situation
- In neonates, \(\text{PaO}_2 < 50 \text{ mm Hg} \) and/or \(\text{SaO}_2 < 88 \text{ mm Hg} \) or capillary \(\text{P}_02 < 40 \text{mm Hg} \)
Causes of Hypoxemia

- Hypoventilation
- Low ventilation/perfusion (V/Q)
- Diffusion defect
- Shunt
- Increased deadspace
Hypoventilation

- A relatively normal V_E is necessary for adequate alveolar ventilation
- Best therapy is to restore ventilation, but supplement O_2 until ventilation is restored
Low Ventilation/perfusion

- Decreased ventilation in relation to perfusion ratio, as in COPD, pneumonia, due to narrowing and clogging of the airways.

- Oxygen therapy increases the PAO₂ to those alveoli that are being ventilated, resulting in an increase in PaO₂.
Diffusion Defect

- Increased thickness of the A-C membrane, caused by pulmonary alveolar or interstitial edema, fibrosis
- High FiO$_2$ needed, therapy is to reduce lung water
Shunt

- Massive alveolar collapse or consolidation, such that >25% of the Qt is not being exposed to ventilated alveolar epithelium
- Requires high FiO₂ and increased pressure
Increased Deadspace

- Massive tissue loss from emphysema results in perfusion of poorly ventilated alveoli or bullae (a form of decreased V/Q)
- Pulmonary emboli reduce perfusion of ventilated alveoli
Indication: An acute care situation in which hypoxemia is suspected

- Hypoxemia needs to be documented thereafter
- Signs/symptoms
 - tachycardia: pulse > 100 in adults
 - increased BP > 150/90 mm Hg in adults
 - Cyanosis
 - shortness of breath/tachypnea
 - SpO₂ < 90%
 - mental confusion
Other Indications

- Severe trauma: head injury, chest crush, traumatic amputation, severe blood loss
- Acute myocardial infarction
 - tachycardia/arrhythmias
 - SOB
 - Cyanosis
 - reduces myocardial work and oxygen consumption
- Short-term therapy
 - post-anesthesia recovery
 - Hypoventilation
 - anesthetic gas washout
Therapeutic Objectives of Oxygen Therapy

- Treat or prevent the symptoms and manifestations of hypoxia
 - Oxygen is most effective to treat hypoxemia caused by hypoventilation, decreased V/Q, and diffusion defects
 - shunts are less effectively treated
 - positive pressure
Therapeutic Objectives of Oxygen Therapy

- Minimize cardiopulmonary workload
 - compensatory response to hypoxemia is increased ventilation and cardiac output
 - hypoxemia and hypercapnia stimulate ventilation, increasing the WOB
 - hypoxemia causes an increase in CO, stressing the heart
Problems related to an increased PAO$_2$

- Absorption atelectasis
- Oxygen toxicity
- Bronchopulmonary dysplasia
Absorption atelectasis

- Normal O_2 diffusion gradient of 60 mm Hg maintained by 79% N_2 in alveoli
- 100% O_2 is administered, the PAO$_2$ rises to 668 mmHg, = very large diffusion gradient
- Oxygen in alveoli rapidly diffuses into the blood, causing alveolar collapse, and an increase in shunt
- Compounded when patients have a lower than normal Vt
- Give only the amount of oxygen needed to raise the PaO$_2$ above 60!
Absorption Atelectasis

A

\[
\begin{align*}
\text{O}_2 & : 55 \\
\text{CO}_2 & : 45 \\
\text{H}_2\text{O} & : 47 \\
\text{Total} & : 147
\end{align*}
\]

\[
\begin{align*}
\text{O}_2 & : 668 \\
\text{CO}_2 & : 45 \\
\text{H}_2\text{O} & : 47 \\
\text{Total} & : 760
\end{align*}
\]

B

\[
\begin{align*}
\text{O}_2 & : 40 \\
\text{CO}_2 & : 45 \\
\text{N}_2 & : 573 \\
\text{H}_2\text{O} & : 47 \\
\text{Total} & : 705
\end{align*}
\]

\[
\begin{align*}
\text{O}_2 & : 100 \\
\text{CO}_2 & : 40 \\
\text{N}_2 & : 573 \\
\text{H}_2\text{O} & : 47 \\
\text{Total} & : 760
\end{align*}
\]

Pure O\textsubscript{2} Air
Oxygen Toxicity

- Increased permeability of the A-C membrane, due to its exposure to high concentrations of oxygen for a prolonged period of time.

- Time and concentration vary by individual; exposure to 100% oxygen for more than 24 hours leads to symptoms:
 - tremors, twitching, substernal burning
 - pulmonary edema
 - reduction in VC, RV and CL
 - reduced clearance of pulmonary secretions due to decreased ciliary motility
Biochemistry of O₂ Toxicity

- As oxygen takes place in biochemical functions, free radicals of oxygen are produced:
 - hydroxyl (OH), perhydroxyl (HO₂), and superoxide O₂
- Normally, free radicals are rapidly detoxified by superoxide dismutase.
- Type II cells do not produce enough SOD to detoxify the increased number of free radicals.
- Free radicals damage the A-C membrane, increasing type I cell interspaces, and poisoning the surfactant production mechanism; allows fluid exudate and decreased compliance.
Bronchopulmonary dysplasia

- Fibrotic disorder of the neonatal lung
- Caused by exposure to high ventilatory pressures and high FiO$_2$
- Clinical implications
 - Ventilate with lowest possible pressures
 - Use the lowest possible FiO$_2$ to maintain oxygenation
Precautions, hazards, and complications of oxygen therapy

- Problems related to an increase in PaO$_2$
 - Oxygen induced hypoventilation
 - Oxygen induced pulmonary vasodilation and decreased V/Q
 - Retinopathy of prematurity
 - Closure of the ductus arteriosus
Oxygen induced hypoventilation

- Normal drive to breathe is hypercapnia
- Oxygen administration to patients with chronic hypoxemia/hypercapnia may cause worsening hypoventilation
- These patients have a “blunted” hypercapnic drive, because they are chronically hypercapnic
- They rely on hypoxemia to stimulate breathing; when their hypoxemia is relieved, they hypoventilate
Oxygen induced pulmonary vasodilation

- When oxygen is administered, pulmonary vasoconstriction is relieved, increasing perfusion to areas with poor ventilation.
- This decreases the V/Q ratio, without a decrease in VE.
- PaCO₂ increases.
- Regardless, administer oxygen cautiously to patients with chronic hypercapnia, to maintain PaO₂ in the 60s.
 - use high flow systems in unstable patients.
 - monitor SpO₂.
Retinopathy of Prematurity

- An increase in PaO₂ above normal in the neonatal period may cause retinal vasoconstriction and necrosis, leading to fibrosis behind the lens, leading to blindness
- Maintain the infant’s PaO₂ below 80 mm Hg
Closure of the ductus arteriosus in Infants With ductus-dependent Heart Lesions

- Transposition of the aorta and pulmonary artery
- Duct joining the aorta and pulmonary artery
- Needs to be maintained in some congenital defects, but may close if a normal PaO₂ is maintained (these kids are normally cyanotic)
Other hazards related to oxygen therapy and equipment

- Oxygen supports combustion
 - always post no smoking signs, educate the patient and associates; NO SMOKING!
 - keep spark-generating toys away from aerosol tents/hoods
 - keep FiO₂ low in patients having intratracheal laser procedures

- Bacterial contamination of associated humidifiers/nebulizers
Assessment of Outcome

- Relief from hypoxemia
- Stable cardiac status
- Stable perfusion status
- Normal ventilatory status
- Normal work of breathing
Equipment for Oxygen Therapy

- Low-flow or variable performance
 - Total flow is up to 15 L/min
 - FiO_2 depends upon
 - Minute volume
 - Ventilatory pattern
 - Reservoir size
 - Oxygen flow rate
- Low flow does not imply low concentration
Differences Between Oxygen Delivery Systems

A = Low flow device
B = High flow device
C = Reservoir device

Flow

Exp

Insp

= Patient's flow

= Device's flow

Mosby items and derived items © 2009 by Mosby, Inc., an affiliate of Elsevier Inc.
Low-flow Oxygen Therapy

Equipment

- Nasal cannula
 - Plastic cannulae, one in each nostril, elastic or lariat to keep in place
 - Easy, light, cheap, disposable
 - Easily dislodged, high flow can cause frontal sinus pain, nose must be patent
 - Nasopharynx as a reservoir
 - 1-6 L/min, to deliver approx. 24-44% O₂
 - Use a bubble humidifier if flow exceeds 4 L/min
Low-flow Oxygen Therapy Equipment

- Oxygen-sparing/storing devices
 - reservoir-type cannulas, generally used in the home
 - Largely replaced by TTOT
Low-flow Oxygen Therapy

- Transtracheal catheter (TTOT)
 - Surgically-placed catheter for long term oxygen therapy
 - Deadspace is minimized, FiO_2 is maintained at a lower flow than with a cannula
 - Hidden by clothing

- FiO_2 may be calculated, but most practitioners titrate liter flow to the desired PaO_2, SaO_2, or clinical finding
Low-flow Oxygen Therapy

Equipment: Masks

- Provide a higher FiO₂ for a given oxygen input, because of the reservoir
- FiO₂ depends on flow, reservoir size, and air leakage
 - used when moderate to high concentrations of oxygen are needed for up to several hours
 - since a tight seal is necessary, they may be uncomfortable and cause a pressure sore; are hot; may cause aspiration if patient vomits
Low-flow Oxygen Therapy

Equipment: Masks

- **Simple mask**
 - clear plastic mask, kept in place by elastic
 - patient inhales from the reservoir of the mask and room air through side holes
 - 5-10 L/min to provide 35-50% oxygen
 - do not run at < 5L/min, as CO₂ may accumulate in the mask
 - post-op, interim therapy
Low-flow Oxygen Therapy

Equipment: Masks

- Partial rebreather mask
 - clear plastic mask with a reservoir bag attached
 - patient inhales from the mask and reservoir bag
 - first 1/3 of exhalation goes into the bag (anatomic DS)
 - oxygen flow is adjusted so bag never deflates more than 2/3 during inspiration
 - run at 6-10 L/min to provide 35-60% oxygen (CPG says > 50%)
Low-flow Oxygen Therapy

Equipment: Masks

- Nonrebreather mask
 - clear plastic mask with a reservoir bag, and one-way valves to prevent rebreathing into the bag
 - gas fills the bag, the patient’s inspiratory effort opens the valve, and inspiration continues
 - may deliver 100% source gas, but a study showed only 57-70%
 - used to deliver therapeutic gases (He and CO\textsubscript{2} mixtures), useful for CO poisoning
High Flow Oxygen Therapy Equipment

- Gas flow is sufficient to meet the patient's inspiratory flow needs
 - by entraining air
 - by mixing gases and storing the mix in a nonrebreathing system
- Provide a constant FiO₂
High Flow Oxygen Therapy
Equipment: Air Entrainment Mask

- Principle of constant pressure jet mixing
 - a rapid velocity of gas through a restricted orifice creates viscous shearing forces that entrain air into the main stream
 - orifice size determines amount of air entrainment
 - the smaller the orifice, the greater the shearing force, and more air is entrained, resulting in a higher flow and lower FiO2
 - FiO2 is independent of gas flow, varies with manufacturer
Air Entrainment Mask

High Flow Oxygen Therapy

Equipment: Air Entrainment Mask

- Used to provide 24-60% O_2
- Normal resting Vi is about 30 L/min, but this may double or triple in distress
- Use the mask to provide at least 40 L/min
- Formula to determine air entrainment ratio:

\[
\text{liters air entrained} = (100 - \%O_2) \times \left(\frac{\%O_2}{21} \right)
\]

liters of source O_2
High Flow Oxygen Therapy

Equipment: Air Entrainment Mask

- Air:oxygen entrainment ratios

<table>
<thead>
<tr>
<th>FiO₂</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>.24</td>
<td>25:1</td>
</tr>
<tr>
<td>.28</td>
<td>10:1</td>
</tr>
<tr>
<td>.30</td>
<td>8:1</td>
</tr>
<tr>
<td>.35</td>
<td>5:1</td>
</tr>
<tr>
<td>.40</td>
<td>3:1</td>
</tr>
<tr>
<td>.50</td>
<td>1.7:1</td>
</tr>
<tr>
<td>.60</td>
<td>1:1</td>
</tr>
</tbody>
</table>
High Flow Oxygen Therapy

Equipment: Air Entrainment Mask

- Some mfrs vary the oxygen orifice size, others vary the air entrainment orifice size.
- Downstream resistance will decrease entrainment and total flow, while the FiO\(_2\) will rise.
- Generally used when a precise FiO\(_2\) is desired, such as in an exacerbation of COPD.
- Mask must be removed to eat, so substitute a NC.
- An aerosol entrainment collar is provided if humidification is necessary.
- Bubble humidifier is not used.
High flow oxygen therapy equipment: air entrainment nebulizers

- Most nebulizers have variable air entrainment ports to provide 28-100% oxygen
- Also provide humidification and heat
- Allows a wide variety of patient interfaces
- Use with a water trap to prevent water bolus
- Most will run at 12-15 L/min, provide up to 40-50% without dropping flow
- High-flow, high FiO₂ nebulizers available
Air Entrainment Nebulizers
High flow oxygen therapy equipment: Oxygen blender systems

- Use an oxygen blender to provide the desired FiO_2
- 75 L/min flowmeter controls gas flow to a heated humidifier
- Gas goes to the patient through large-bore tubing
- A more “true” high-flow system; provides a high FiO_2 at a high flow
- Risk of oxygen toxicity increases; consider positive pressure therapy (shunt)
Oxygen Blenders

- Combined precision metering device and means of equalizing inlet pressures
- Alarm system that provides an audible alert to a drop in gas pressure
- Crossover allows continued flow if one gas fails
- May deliver 2-100 L/min, at 21-100% O2
- Knob sets the desired FiO2
- Used to provide high flow oxygen therapy and to power ventilators
- Analyze O2 periodically, replace if inaccurate
High Flow Oxygen Therapy Equipment

- **Oxyhood**
 - plexiglass container fitting over infant’s head
 - should be supplied by an oxygen blender system to reduce noise; a heated humidifier is preferred
High Flow Oxygen Therapy

- **Incubator:** 40% oxygen, varies with opening
- **Aerosol mist tent**
 - a large plastic enclosure
 - powered by oxygen, can provide a stable concentration
 - hard to keep a tight seal, therefore FiO_2 varies
Indications for High Flow Oxygen

- Hyperpnea
- Tachypnea: ventilatory rate > 30
- Irregular ventilatory pattern
- Precise FiO₂ desired
- Unknown etiology of hypoxemia
- Inability to achieve an acceptable SpO₂ with nasal cannula
- Mouth breathers; nasal obstruction
Selecting a Delivery Approach

- **Purpose**
 - Increase FiO₂ to correct hypoxemia

- **Patient**
 - Severity, age, LOC, airway, \(V_E \)

- **Equipment performance**
 - Low FiO₂: AEM or NC
 - Moderate: AEM or simple mask
 - High: blender or NRBM
Oxygen Therapy Protocol

- Initial order
- Therapist initiates therapy
- \(\text{SpO}_2 \) measured and flow/\(\text{FiO}_2 \) is titrated
- Periodic evaluation
- At minimal flow/\(\text{FiO}_2 \), room air trial
- D/C \(\text{O}_2 \) if oxygenation and physical examination are acceptable
Oxygen Analyzers: Galvanic

- Oxygen diffuses through a teflon membrane
- Electrolyte solution is CsOH or KOH
- PB and Au are the electrodes
- Oxygen diffuses proportionally to its partial pressure
- For each oxygen molecule that diffuses, 4 electrons are released at the cathode, this registers as a current on the meter, and is read as a concentration of oxygen
Oxygen Analyzers: Galvanic

- Current flow is maintained by the reaction itself
- Such analyzers have a fuel cell as the source of electrons
- Once the fuel cell is spent, it is replaced
 - Failure to calibrate
- No batteries, except for an alarm
- Slow response time
- Fuel cell shelf life 16 mo.
Oxygen Analyzers: Polarographic

- Same principle as the fuel cell analyzer
- Uses a battery to polarize the electrodes, which speeds response time
- Similar equations
- KCl electrolyte solution
- Electrodes don’t last as long as fuel cells, and must be recharged or replaced
 - Failure to calibrate
- Effected by water on the electrode - keep dry
- Positive pressure effects readings
Oxygen Analyzer Calibration

- Place electrode in room air, calibrate
- Place electrode in 100% oxygen, calibrate
- Return to room air; reading should return to within 2% of 21%
- If it does not calibrate
 - battery may be spent (polarographic only)
 - fuel cell is spent
 - teflon membrane is soiled
 - electrode needs recharging
Pulse oximetry: Theory

- Utilizes photospectrometry to measure the oxygen saturation of a capillary bed.
- Two light emitting diodes, one at 660 nm, the other at 900 nm.
- Red/infrared light passes through the capillary bed to a detector.
- Detector senses the resultant color.
- The darker the color, the lower the saturation.
Pulse oximetry: Indications

- Need to monitor adequacy of arterial oxyhemoglobin saturation
- Need to quantitate the effect of oxygen therapy or other therapeutic procedure on hemoglobin saturation
- Assessment of oxygenation, in compliance with third party payers for home oxygen therapy
Pulse oximetry: Limitations

- Motion artifact
- Abnormal hemoglobins (carboxy and met)
- Intravascular dyes (blue, green)
- Low perfusion
- Ambient light
- Skin pigmentation
- Nail polish when using a finger probe
- Cannot quantitate hyperoxia
- Hyperbilirubinemia does not affect readings
Outline of procedure

- Inform the patient
- Establish hypoxemia
 - ABG, oximetry, or clinical signs
- Consider patient factors
 - Severity/cause of hypoxemia
 - Age
 - Level of consciousness
 - Type of airway
 - Stability of minute ventilation
- Determine desired FiO₂ and patient stability
Outline of procedure

- General goals and patient categories
 - Emergent hypoxemia
 - High FiO2
 - Critically-ill
 - High FiO2 titrated to achieve desired SpO2
 - Stable, acutely-ill
 - Low-moderate FiO2, titrated to achieve desired SpO2
 - CO2 retainers
 - Low FiO2 titrated to SpO2 88-92%
Outline of Procedure

- Setup the appropriate equipment
- Check that it is working properly
 - Adequate flow
 - Humidifier pops-off, if applicable
- Reassure the patient
- Apply to the patient
- Assess adequacy of therapy
- Documentation