ANATOMICAL CONTRASTS WITH SYSTEMIC CIRCULATION

- Thinner walled vessels; main pulmonary artery VS aorta
- Pulmonary artery branches also have thinner walls and greater internal diameter branches
- Much less vascular smooth muscle
- No highly muscular vessels corresponding to system arterioles
- Rapid subdivision along short distance
- 280 x 10⁹ pulmonary capillaries
- Pulmonary vessels offer much less R to blood flow
ANATOMICAL CONTRASTS WITH SYSTEMIC CIRCULATION

- Pulmonary vessels much more
 - Compressible
 - Distensible
- Pulmonary vessels are subject to changes in
 - Alveolar pressure
 - Intrapleural pressure
 - Thoracic pressure
 - Lower intravascular pressures
 - Factors other than vascular tone affect pul. Vasc. Res (PVR)
ANATOMICAL CONTRASTS WITH SYSTEMIC CIRCULATION

- right and left ventricles are in series
- \dot{Q}_T must be equal over time; otherwise: edema
- LV feeds RV; RV feeds LV
- \dot{Q}_T may vary over a few beats
- pulmonary arteries (deoxygenated blood) follow the course that parallels lung branches
- pulmonary veins (oxygenated blood) do NOT
- pulmonary capillaries are described as thin sheets; systemic caps are tubular
ANATOMICAL CONTRASTS WITH SYSTEMIC CIRCULATION

BRONCHIAL CIRCULATION

- TB tree (trachea to respiratory bronchioles) is supplied with oxygenated blood fed from the systemic circulation
- 1% to 2% of Q_T flows into bronchial circulation
- $\frac{1}{2}$ of bronchial venous blood enters pulmonary veins (normal anatomical shunt)
- $\frac{1}{2}$ of bronchial venous blood enters systemic venous blood (IVC).
ANATOMICAL CONTRASTS WITH SYSTEMIC CIRCULATION

PULMONARY VASCULAR RESISTANCE (PVR)

- PVR cannot be directly measured — it is calculated
 - Poiseuille’s law:
 \[R = \frac{P_1 - P_2}{\dot{Q}} \]
 - \(PVR = \frac{PAP - PCWP}{C.O.} \)

\[PVR = \frac{12 \text{ torr} - 5 \text{ torr}}{5 \text{ L/min}} = 1.4 \text{ torr/L/min} \]
ANATOMICAL CONTRASTS WITH SYSTEMIC CIRCULATION

SYSTEMIC VASCULAR RESISTANCE (SVR)

\[SVR = \frac{MAP - CVP}{C.O.} \]

\[SVR = \frac{95 \text{ torr} - 5 \text{ torr}}{5 \text{ L/min}} = 18 \text{ torr/L/min} \]

\[\frac{SVR}{PVR} = \frac{18}{2} = \frac{9}{1} \]
ANATOMICAL CONTRASTS WITH SYSTEMIC CIRCULATION

- Pulmonary circulation has higher pulse pressure in relation to mean pulmonary vascular pressure than systemic circulation.
- Therefore, pulmonary vascular blood flow is more pulsatile.
- Systemic circulation has lower pulse pressure in relation to mean systemic vascular pressure than pulmonary circulation.
- Therefore, pulmonary vascular blood flow is more continuous.
ANATOMICAL CONTRASTS WITH SYSTEMIC CIRCULATION

- Pulmonary circulation blood volume = ~ 500 ml (10% of total circulating blood volume)
- 75 to 100 ml in pulmonary capillaries;
 ~ 200 ml in arteries and arterioles;
 ~ 200 ml in veins and venules
- RV stroke volume = 70 ml to 90 ml
- Plenty time (0.75 sec) for gas exchange
- Pulmonary vasculature serves as a reservoir for left atrium
 - If venous return to RV increases suddenly,
 - LV filling does not change for 2 or 3 beats
ANATOMICAL CONTRASTS WITH SYSTEMIC CIRCULATION

- Low PVR caused by
 - Thinner vessel walls
 - Less vascular smooth muscle
 - More distensible vessels
ANATOMICAL CONTRASTS WITH SYSTEMIC CIRCULATION

DISTRIBUTION OF PVR

- 3 major components of the pulmonary vasculature
 - Arteries and arterioles
 - Capillaries
 - Veins and venules

 1/3 PVR in arteries and arterioles
 1/3 PVR in pulmonary capillaries
 1/3 PVR in veins and venules

 - Systemically, 70% SVR is in highly muscular arterioles
CONSEQUENCES OF DIFFERENCES IN PRESSURES BETWEEN SYSTEMIC AND PULMONARY CIRCULATION

- LV must pump blood at a higher pressure to overcome higher SVR
 - Blood to pump over a longer distance
- RV must pump blood at a lower pressure to overcome lower PVR
 - Blood to pump over a shorter distance
- LV must meet varying demands for blood all over the body; different blood flow needs to different systems
CONSEQUENCES OF DIFFERENCES IN PRESSURES BETWEEN SYSTEMIC AND PULMONARY CIRCULATION

For example, exercise:
- Blood flow diverted from gut to skeletal muscles to aid in thermoregulation, oxygenation, and waste product removal
- In pulmonary vasculature low pressure occurs because redistribution of R C.O. is not a factor
- Lower pulmonary vascular pressure because of
 — recruitment
 — distention
 not caused by (1) pulmonary vascular muscle tone, (2) neural mechanism, (3) humoral agents
CONSEQUENCES OF DIFFERENCES IN PRESSURES BETWEEN SYSTEMIC AND PULMONARY CIRCULATION

- LV workload > RV workload
 - Stroke work = SV x mean arterial pressure
 - RV stroke work = SV x PAP (~ 15 torr)
 - LV stroke work = SV x MAP (100 torr)
- Metabolic demand of LV > RV
- LV > muscle mass than RV
CONSEQUENCES OF DIFFERENCES IN PRESSURES BETWEEN SYSTEMIC AND PULMONARY CIRCULATION

● Extravascular effects on PVR (passive factors)
 – Body position
 – Gravity
 – Alveolar pressure
 – Intrapleural pressure
 – Intravascular pressure
 – RV output

All affect PVR without altering tone of pulmonary vascular, small muscle
CONSEQUENCES OF DIFFERENCES IN PRESSURES BETWEEN SYSTEMIC AND PULMONARY CIRCULATION

TRANSMURAL PRESSURE GRADIENT

- Determine diameter (internal) of vessels
- Transmural $P = \text{intravascular } P - \text{intrapleural } P$
 - \uparrow transmural $P = \uparrow$ intravas. P and/or \downarrow intrapleural P
 - $= \uparrow$ vessel diameter
 - $= \downarrow$ PVR
 - $= \uparrow$ blood flow
 - \downarrow transmural $P = \downarrow$ intravas. P and/or \uparrow intrapleural P
 - $= \downarrow$ vessel diameter
 - $= \uparrow$ PVR
 - $= \downarrow$ blood flow
- Negative transmural P may indicate vessel collapse
Because ΔP across the pulmonary vasculature remains relatively constant (K) despite increases in right ventricular C.O.,

$$R = \frac{\Delta P}{\dot{V}} = \frac{\Delta P}{\dot{Q}}$$

$$(\dot{V} = \dot{Q})$$

$$\Delta P = \dot{V} \times R = \dot{Q} \times R$$

C.O.

$\Delta P = K$, therefore,

$$K = \uparrow \dot{V} \times R \downarrow$$

RECRUITMENT & DISTENTION
RECRUITMENT & DISTENTION

- R must decrease as C.O. or \(\dot{Q} \) increases to maintain a constant \(\Delta P \)

 Caused by:
 - recruitment
 - distention

- The \(\downarrow R \) is passively caused by:
 - No vasodilatation
 - No small muscle relaxation
 - No humoral agents
RECRUITMENT & DISTENTION

- Not all pulmonary capillaries perfused
- As RV C.O. ↑, parallel vascular pathways open and R↓ = RECRUITMENT
- ↓ R C.O. = derecruitment
- As RV C.O. ↑ further, ↑ intravascular P = ↑ TMP
- ↓ R = DISTENTION
HYPOXIC PULMONARY VASOCONSTRICTION RESPONSE

- \(\downarrow PAO_2 \) cause pulmonary vasoconstriction
 - At precapillary vessels
 - Local (regional) response
 - Extrinsic neural input unnecessary
 1. Hypoxia directly stimulates vascular smooth muscle cells
 2. Release of vasoactive substances
 - prostaglandins
 - catecholamines
 - Diverts blood flow to better ventilated areas
 - Regional VS. whole lung
 • High altitude
 • Alveolar hypoventilation
Nitric oxide (NO) causes pulmonary vasodilatation

Endogenous or humoral substances:
- Bradykinin
- Acetylcholine
- Serotonin
- Histamine
- Thrombin
- Adenosine diphosphate (ADP)

Stimulates endothelial cells lining pulmonary vessels
NITRIC OXIDE AND VASODILATATION

- Stimulate endothelial cell receptors to produce constitutive – nitric oxide synthase (cNOS) (small amount) (stretching and shear stress also stimulate these receptors.) in presence of Ca^{++}

- cNOS catalyzes oxidation of L-arginine, producing release of small amount of NO
NITRIC OXIDE AND VASODILATATION

- NO stimulates pulmonary vessels to dilate
- NO highly soluble in cell membrane and diffuses instantly into vascular endothelium smooth muscle cells
- NO activates guanylate cyclase which catalyzes production of cGMP
- cGMP causes vascular smooth muscle relaxation
NITRIC OXIDE AND VASODILATATION

● SEPTIC SHOCK
 - Calcium-independent form of NOS induced in endothelial and phagocytic cells by endotoxins associated with bacterial blood infection and by various inflammatory mediators
NITRIC OXIDE AND VASODILATATION

- Calcium-independent form of NOS called inducible NOS, or iNOS
- iNOS causes continuous release NO
- Continuously released NO responsible for massive
 - Vasodilatation
 - Hypotension

- Septic shock nonresponsive to vasoconstriction
- NO given therapeutically to treat PPHN of the newborn

Associated with septic shock
Starling’s Law of the Capillaries

\[\dot{Q}_f = K_f [(P_c - P_I) - \sigma (\pi_c - \pi_I)] \]

\(\dot{Q}_f \) = net fluid flow across capillaries
\(K_f \) = filtration coefficient (permeability characteristics of the membrane)
\(P_c \) = HP in capillaries
\(P_I \) = HP in interstitium
\(\sigma \) = reflection coefficient (ability of membrane to prevent extravasation of solutes)
\(\pi_c \) = osmotic pressure in capillaries
\(\pi_I \) = osmotic pressure in interstitium
Starling’s Law of the Capillaries

Systemic Capillary

<table>
<thead>
<tr>
<th>Arterial end</th>
<th>Venous end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillary endothelium</td>
<td>Capillary endothelium</td>
</tr>
<tr>
<td>Intravascular space</td>
<td>Intravascular space</td>
</tr>
</tbody>
</table>

\[Q \rightarrow \]

- CHP: 30 mm Hg
- COP: 25 mm Hg
- CHP: 10 mm Hg
- COP: 28 mm Hg
- IHP: -3 mm Hg
- IOP: 4 mm Hg
Starling’s Law of the Capillaries

Pulmonary Capillary
- Pulmonary interstitium
- Capillary endothelium
- Pulmonary vasculature

\[Q \rightarrow \]

- CHP 7 mm Hg
- Pulmonary vasculature
- Capillary endothelium
- Pulmonary interstitium

\[-8 \text{ mm Hg}\]

- IHP

\[Q \rightarrow \]

- COP 28 mm Hg
- IOP 14 mm Hg
Pulmonary Capillary Fluid Balance

\[P_{\text{interstitial}} \]
\[\pi_{\text{interstitial}} \]

Arterial end

P_{\text{intravascular}}

Venous end

Hydrostatic

Oncotic

Interstitial space

Blood vessel

Lymphatic flow