BASICS OF WAVEFORM INTERPRETATION
Objectives

• Identify graphic display options provided by mechanical ventilators.

• Describe how to use graphics to adjust the patient ventilator interface.

• Interpret ventilator graphics to identify problems during mechanical ventilation.
Introduction

Monitoring and analysis of graphic display of curves and loops during mechanical ventilation has become a useful way to determine not only how patients are being ventilated, but also a way to assess problems occurring during ventilation.
Uses of Flow, Volume, and Pressure Graphic Displays

- Confirm mode functions.
- Detect auto-PEEP.
- Determine patient-ventilator synchrony.
- Assess and adjust trigger levels.
- Measure the work of breathing.
- Adjust tidal volume and minimize overdistension.
- Assess the effect of bronchodilator administration.
- Detect equipment malfunctions.
- Determine appropriate PEEP level.
Uses of Flow, Volume, and Pressure Graphic Displays

- Evaluate adequacy of inspiratory time in pressure control ventilation.
- Detect the presence and rate of continuous leaks.
- Assess inspiratory termination criterion during pressure support ventilation.
- Determine appropriate rise ime.
Measured Variables

Flow
Pressure
Volume
Time
Most Commonly Used Waveforms (Scalars)

- Pressure-Time
- Flow-Time
- Volume-Time
Pressure-Time Scalar

\[P_{aw} \text{ cm H}_2\text{O} \]

-10

30

Mean Airway Pressure

Baseline

A

B

C

PIP

Sec

1 2 3 4 5 6
Pressure-Time Scalar

P_{aw}

cm H$_2$O

Sec

Volume Ventilation

Pressure Ventilation
Patient Triggering

\[P_{aw} \text{ cmH}_2\text{O} \]

-10 0 10 20 30

1 2 3 4 5 6

Sec
Patient Triggering

Excessive patient effort
Time Triggering

Pressure does NOT drop below baseline.
Adequate Flow During Volume-Control Ventilation

![Graph showing pressure over time with adequate flow indicated.]
Inadequate Flow During Volume-Control Ventilation
Patient-Ventilator Synchrony
Volume Ventilator Delivering a Preset Flow and Volume

Adequate Flow

\[P_{aw} \text{ cm H}_2\text{O} \]

-20

1 2 3 4 5 6

Sec
Patient-Ventilator Dyssynchrony

The Patient Outbreathing the Set Flow

\[P_{aw} \text{ cm H}_2\text{O} \]

Air Starvation

-20

Sec
Inadequate Plateau Time

Inadequate plateau time

P_{aw} cm H$_2$O

SEC
Plateau Time

- Adequate plateau time
- Inadequate plateau time

\[P_{aw} \text{ cm H}_2\text{O} \]

SEC
Flow-Time Scalar

- Inspiration
- Exhalation
Flow-Time Scalar

- Inspiration
- Expiration

V

LPM

SEC

INSPARATION

EXHALATION
Flow-Time Scalar

Constant Flow Descending Ramp

Inspiration

INSP

EXH

SEC

LPM

V

-120

120

1 2 3 4 5 6

1 2 3 4 5 6
Flow-Time Scalar

\[\dot{V} \]

LPM

120

-120

1 2 3 4 5 6

SEC

INSP

Expiration

Insp. Pause

EXH
Inspiratory Time (T_i)

Short Normal Long
Expiratory Flow and Changes in Expiratory Resistance
Higher Expiratory Flow and Decreased T_E: Lower Expiratory Resistance
Obstructed Lung

Delayed flow return to baseline.
Pressure-Time and Flow-Time Scalars

Volume Ventilation

Expiration

\[\text{P}_{\text{aw}} \]
\[\text{cm H}_2\text{O} \]

\[\dot{V} \]
Pressure-Time and Flow-Time Scalars
Different Inspiratory Flow Patterns

Volume Ventilation

Expiration

Inspiration

\(P_{aw} \) cm H\(_2\)O

\(\dot{V} \)

Sec
Pressure-Time and Flow-Time Scalars

- Volume Ventilation
- Pressure Ventilation
- Inspiratory Time

Parameters:
- P_{aw} (cm H$_2$O)
- V (Volume)
Rise Time

How quickly set pressure is reached.
Flow Acceleration Percent Rise Time

Minimal Pressure Overshoot

Slow rise Moderate rise Fast rise

Pressure Relief

Time
Patient-Ventilator Synchrony

Volume Ventilation Delivering a Preset Flow and Volume

\(P_{aw} \)
\(\text{cmH}_2\text{O} \)

Adequate Flow
Patient-Ventilator Dyssynchrony

The Patient Is Outbreathing the Set Flow

![Graph showing air starvation](image)
If Inspiratory Flow Remains Constant, T_I Increases: Could Cause Asynchrony

Longer T_I than with square wave flow pattern.
Increased Inspiratory Flow: Decreased T_I
Detecting Auto-PEEP

Zero flow at end exhalation indicates equilibration of lung and circuit pressures.

Note: There can still be pressure in the lung behind airways that are completely obstructed.
Detecting Auto-PEEP

The transition from expiratory to inspiratory occurs without the expiratory flow returning to zero.
Volume-Time Scalar

800 ml

VT

Inspiration

SEC

1 2 3 4 5 6
Volume-Time Scalar

Expiration

800 ml

\(V_T \)
Typical Volume-Time Scalar

A = inspiratory volume
B = expiratory volume

V_T (Liters) vs. SECONDS

I-Time

E-Time
Leaks

A = exhalation that does not return to zero
Setting Appropriate T_I

![Graph showing tidal volume (V_T) and ventilation rate (\dot{V}) over time in seconds (SEC). The graph indicates a tidal volume of 450 ml at 1 second and a ventilation rate around 120 LPM at the same time.]
Setting Appropriate T_I

- V_T values: 600 ml, 450 ml, 500 ml
- LPM values: 120 LPM, -120 LPM

Lost V_T
Loops

• Pressure-Volume Loops

• Flow-Volume Loops
Pressure-Volume Loop
Mandatory Breath

\[P_{aw} \text{ cm H}_2\text{O} \]

\[V_T \text{ LITERS} \]

Inspiration
Mandatory Breath

\[P_{aw} \text{ cm H}_2\text{O} \]

\[V_T \text{ LITERS} \]

Expiration

Inspiration

Counterclockwise
Spontaneous Breath

Inspiration

P_{aw} (cm H_{2}O)

V_{T} (LITERS)

Clockwise
Spontaneous Breath

Inspiration

Expiration

P_{aw}

cm H$_2$O

V_T

LITERS

Clockwise

-60 -40 -20 0 20 40 60

0 0.2 0.4 0.6
Work of Breathing
Patient-Triggered Breath

Paw (cm H₂O)

Vₜ (LITERS)

-60 -40 -20 0 20 40 60

0.2 0.4 0.6

Patient-Triggered Breath
Patient-Triggered Breath

\[P_{aw} \text{ cm H}_2\text{O} \]

\[V_T \text{ LITERS} \]

-60 -40 -20 0 20 40 60

Inspiration
Patient-Triggered Breath

Paw (cm H₂O)

VT (LITERS)

Expiration

Inspiration

Clockwise to Counterclockwise
Pressure-Volume Loop Changes
Changes in Compliances

Indicates a drop in compliance (higher pressure for the same volume).
Overdistension

A = inspiratory pressure
B = upper inflection point
C = lower inflection point
Lung Overdistension

Duck bill (beak)
Flow-Volume Loops
Volume Control
ETT or Circuit Leaks
Obstructive Pattern
Bronchodilator Response

BEFORE

INSPIRATION

EXHALATION

V
LPS

V
LPS
Bronchodilator Response

BEFORE

AFTER

Worse

INSPIRATION

EXHALATION
Bronchodilator Response

BEFORE

AFTER

Worse

Better

INSPIRATION

EXHALATION
Remember!

Waveforms and loops are graphical representation of the data generated by the ventilator.

Typical Tracings
- Pressure-time,
- Flow-time,
- Volume -time

Loops
- Pressure-Volume
- Flow-Volume

Assessment of pressure, flow and volume waveforms is a critical tool in the management of the mechanically ventilated patient.
Volume-Controlled Ventilation
Pressure support breath
No return to baseline

Air trapping
Inspiration

Flow

Volume

Expiration

Normal

Abnormal
\[\dot{V}_{CO_2} \]

\[\dot{V}_A = \dot{V}_E - \dot{V}_D \]

\[\dot{V}_T \]

\[f \]

\[T_i \]

\[T_E \]